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a b s t r a c t 

The evaluation of changes in Intervertebral Discs (IVDs) with 3D Magnetic Resonance (MR) Imaging (MRI) 

can be of interest for many clinical applications. This paper presents the evaluation of both IVD localiza- 

tion and IVD segmentation methods submitted to the Automatic 3D MRI IVD Localization and Segmen- 

tation challenge, held at the 2015 International Conference on Medical Image Computing and Computer 

Assisted Intervention (MICCAI2015) with an on-site competition. With the construction of a manually 

annotated reference data set composed of 25 3D T2-weighted MR images acquired from two different 

studies and the establishment of a standard validation framework, quantitative evaluation was performed 

to compare the results of methods submitted to the challenge. Experimental results show that overall 

the best localization method achieves a mean localization distance of 0.8 mm and the best segmentation 

method achieves a mean Dice of 91.8%, a mean average absolute distance of 1.1 mm and a mean Haus- 

dorff distance of 4.3 mm, respectively. The strengths and drawbacks of each method are discussed, which 

provides insights into the performance of different IVD localization and segmentation methods. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Low back pain (LBP) is one of the most prevalent health prob-

ems amongst the world’s population and is a leading cause of dis-

bility that affects work performances and well-being ( Maniadakis
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nd Gray, 20 0 0; Andersson, 2011; Wieser et al., 2011 ). A strong

ssociation between LBP and intervertebral disc (IVD) degeneration

as been repeatedly reported in various clinical studies ( Luoma

t al., 20 0 0; Kjaer et al., 20 05; Cheung et al., 20 09 ). Although

lmost every medical imaging modality has been used to eval-

ate lumbar degenerative disc disease, Magnetic Resonance (MR)

maging (MRI) is widely recognized as the imaging technique of

hoice for the assessment of lumbar IVD abnormalities due to its

xcellent soft tissue contrast and no ionizing radiation ( Emch and
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Table 1 

Summary of the state-of-the-art methods for IVD/vertebra detection and segmen- 

tation. Here we focus on MR-based methods but a few relevant CT-based methods 

are also mentioned. See main text for details. 

Classification Method 2D or 3D? Type 

IVD Detection Peng et al. (2005) 2D Semi-automatic 

Schmidt et al. (2007) 3D Automatic 

Corso et al. (2008) ; Alomari 

et al. (2011) 

2D Automatic 

Huang et al. (2009) 2D Automatic 

Stern et al. (2010) 3D Automatic 

Donner et al. (2010) 2D Automatic 

Zhan et al. (2012) 3D Automatic 

Oktay and Akgul (2013) 2D Automatic 

Michael Kelm et al. (2013) 3D Automatic 

Glocker et al. (2012) ; 2013 ) 3D Automatic 

Chen et al. (2015a ) 3D Automatic 

Cai et al. (2015) 3D Automatic 

Suzani et al. (2015) 3D Automatic 

Chen et al. (2015c ) 3D Automatic 

IVD Segmentation Carballido-Gamio et al. (2004) 3D Automatic 

Peng et al. (2005) 2D Semi-automatic 

Chevrefils et al. (2007) ; 2009 ) 2D Automatic 

Huang et al. (2009) 2D Automatic 

Michopoulou et al. (2009) 2D Semi-automatic 

Ben Ayed et al. (2011) 2D Semi-automatic 

Neubert et al. (2012) 3D Semi-automatic 

Egger et al. (2012) 2D Semi-automatic 

Law et al. (2013) 2D Semi-automatic 

Schwarzenberg et al. (2014) 3D Semi-automatic 

Ali et al. (2014) 3D Automatic 

Chen et al. (2015a ) 3D Automatic 

Wang et al. (2015) 3D Automatic 
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Modic, 2011; Parizel et al., 2007 ). This, in turn, has sparked specific

interest in developing methods for automated image analysis and

quantification for the diagnosis of spinal diseases using MR im-

ages, though most of them work only with two-dimensional (2D)

images. Here the term image analysis refers to localization and

segmentation of the IVDs, which is a step prior to the quantifica-

tion process. The published methods can be roughly classified into

two groups: disc detection and disc segmentation. Table 1 shows

a summary of the state-of-the-art methods for IVD/vertebra detec-

tion and segmentation. 

The methods in the first group focus on automated detection of

the discs or vertebrae but without segmenting them ( Peng et al.,

20 05; Schmidt et al., 20 07; Corso et al., 20 08; Alomari et al., 2011;

Stern et al., 2010; Donner et al., 2010; Oktay and Akgul, 2013 ). For

example, Peng et al. (2005) used intensity profiles to localize the

24 articulated vertebrae from whole spine MR images and their

method required a manual selection of the so-called best MR im-

age slice among all the sagittal slices. Schmidt et al. (2007) pro-

posed a part-based graphical model for spine detection and label-

ing. They used the part-based graphical model to represent both

the appearance of local parts and the shape of the anatomy in

terms of geometric relations between parts. Features for detect-

ing parts were learned from a set of training data in manually

marked image regions. Along the same line, ( Corso et al., 2008;

Alomari et al., 2011 ) presented a different graphical model for the

lumbar disc localization. They used a two-level probabilistic model

with latent variables to capture both pixel- and object-level fea-

tures. Generalized expectation maximization method was used for

optimization. The method was validated on 2D sagittal MR images.

Stern et al. (2010) described another method for automatic IVD de-

tection from MR images of lumbar spine. Their method worked by

first extracting spinal centerlines and then detecting the centers

of vertebral bodies and IVDs by analyzing the image intensity and

gradient magnitude profiles extracted along the spinal centreline.

There also exist methods using Markov Random Field (MRF)-based
nference. Donner et al. (2010) proposed to formulate the localiza-

ion of an object model from an input image as an MRF-based op-

imal labeling problem. They used MRF to encode the relation be-

ween the model and the entire search image. Recently, Oktay and

kgul (2013) described a method to simultaneously localize lum-

ar vertebrae and IVDs from 2D sagittal MR images using support

ector machine (SVM) based MRF. 

In contrast, the methods in the second group aim for disc seg-

entation. The disc detection in these methods could be done

anually, semi-automatically or fully-automatically. Chevrefils

t al. (20 07; 20 09) presented a texture analysis based method

or automatic segmentation of IVDs from 2D MR images of sco-

iotic spines. Their method exploited a combination of statistical

nd spectral texture features to discriminate closed regions repre-

enting IVDs from background in MR images. The closed regions

re obtained with the watershed approach. Michopoulou et al.

2009) proposed a probabilistic atlas-based method for segmen-

ation of degenerated lumbar IVDs from 2D MR images of the

pine. Their method was semi-automatic and required an inter-

ctive selection of the leftmost and rightmost disc points. The

eported Dice coefficients of this method were 91.6% for normal

nd 87.2% for degenerated discs. A statistical shape models-based

ethod was proposed by Neubert et al. (2012) for automated

hree-dimensional (3D) segmentation of high resolution spine MR

mages. Their method required an interactive placement of a set of

nitial rectangles along spine curve. Different types of graph theory

ased methods ( Carballido-Gamio et al., 2004; Huang et al., 2009;

li et al., 2014; Ben Ayed et al., 2011; Egger et al., 2012; Yao et al.,

006; Schwarzenberg et al., 2014 ) are also popular in disc or verte-

ra segmentation. Among the methods in this category, there exist

ethods in the form of normalized cut ( Carballido-Gamio et al.,

004; Huang et al., 2009 ). For example, Carballido-Gamio et al.

2004) applied the normalized cut to segment T1-weighted MR

mages. Huang et al. (2009) improved this method by proposing an

terative algorithm and evaluated their method on 2D sagittal MR

lices. There also exist graph theory based methods in the form

f graph cut ( Ali et al., 2014; Ben Ayed et al., 2011 ). For example,

en Ayed et al. (2011) designed new object-interaction priors for

raph cut image segmentation and applied their method to IVD

elineation in 2D MR lumbar spine images. Their method required

 manual selection of the first disc center. Evaluated on 15 2D mid-

agittal MR slices, this method achieved an average 2D Dice over-

ap coefficient of 85%. More recently, following the idea introduced

y Li et al. (2006) , both square-cut ( Egger et al., 2012 ) and cubic-cut

 Schwarzenberg et al., 2014 ) methods were proposed. The square-

ut method works only on 2D sagittal slices of MR data while the

ubic-cut method can be used for 3D spinal MR image segmenta-

ion. Another method on IVD segmentation from middle sagittal

pine MR images was introduced by Law et al. (2013) . They used

he anisotropic oriented flux detection scheme to distinguish the

iscs from the neighboring structures with similar intensity with a

inimal user interaction. 

Recently, machine learning-based methods have gained more

nd more interest in the medical image analysis community. Most

f these methods are based on ensemble learning principles that

an aggregate predictions of multiple classifiers and demonstrate

uperior performance in various challenging medical image analy-

is problems. For example, Zheng et al. (2008) proposed marginal

pace learning to automatically localize the heart chamber from 3D

omputed Tomography (CT) data. This method has been success-

ully used for spine detection in CT and MR images ( Michael Kelm

t al., 2013 ). Zhan et al. (2012) presented a hierarchical strategy

nd local articulated model to detect vertebrae and discs from 3D

R images. They used a Haar filter based Adaboost classifier and

 local articulated model for calculating the spatial relations be-

ween vertebrae and discs. A combination of wavelet transform
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ased Adaboost classifier and iterative normalized cut was pro-

osed by Huang et al. (2009) for detecting and segmenting ver-

ebrae. Due to the successful applications of Random Forest (RF)

egression for automatic localization of organs from 3D volumet-

ic CT/MR data ( Pauly et al., 2011; Criminisi et al., 2013 ), such a

echnique has been used by Glocker et al. (2012; 2013) for local-

zation and identification of vertebrae in arbitrary field-of-view CT

cans. Another two regression-based approaches were introduced

y Chen et al. (2015a ) and Wang et al. (2015) , respectively. More

pecifically, Chen et al. (2015a ) proposed a unified data-driven re-

ression and classification framework to tackle the problem of lo-

alization and segmentation of IVDs from T2-weighted MR data

hile Wang et al. (2015) proposed to address the segmentation of

ultiple anatomic structures in multiple anatomical planes from

ultiple imaging modalities with a sparse kernel machines-based

egression. More recently, the advancement of deep learning ap-

roaches provides another course of efficient methods for spinal

mage processing. For example, Cai et al. (2015) proposed to use

 3D deformable hierarchical model for multi-modality vertebra

ecognition in arbitrary view where multi-modal features extracted

rom deep networks were used for vertebra landmark detection.

hile both Chen et al. (2015c ) and Suzani et al. (2015) used deep

earning approaches for automatic vertebrae detection and local-

zation from spinal CT data, they used different types of deep neu-

al networks. More specifically, the work done by Suzani et al.

2015) was based on feed-forward neural networks while the work

one by Chen et al. (2015c ) was based on deep convolutional neu-

al networks. 

Meaningful comparisons of algorithm performance among vari-

us state-of-the-art IVD localization and segmentation methods are

ighly desired. However, direct and objective comparisons are dif-

cult to achieve due to following two issues: (1) Different MR data

ets acquired with different image acquisition protocols are used

n different studies, and most of these MR data sets are not pub-

icly available. Although there exists one open data set for com-

aring algorithms for clinical vertebral segmentation from 3D CT

ata ( Yao et al., 2016 ), to the best of our knowledge, there ex-

sts only one open MR data set with the associated manual de-

ineation of IVDs ( Oktay and Akgul, 2013 ). This open MR data set,

owever, cannot be used to evaluate and compare 3D IVD localiza-

ion and segmentation algorithms, as only 2D mid-sagittal slices

re available in the data set; and (2) Different evaluation met-

ics are used in different studies, which precludes the possibility

f direct comparison. Therefore, to address the above mentioned

hallenges in algorithm comparison, it is necessary to establish

 standard validation framework with a publicly available refer-

nce MR data set. To reach this goal, a grand challenge on Auto-

atic IVD Localization and Segmentation from 3D T2 MR Data was

eld in conjunction with the third MICCAI Workshop on Compu-

ational Methods and Clinical Applications for Spine Imaging (CSI)

 http://ijoint.istb.unibe.ch/challenge/index.html ). 

The challenge report described in this paper intends to first

onstruct an annotated reference data set composed of 3D T2-

eighted Turbo Spin Echo (TSE) MR images for validation purpose

nd then to establish a standard framework for an objective com-

arison of different IVD localization and segmentation algorithms.

etails of challenge setup and challenge results will be described

n the following sections. More specifically, in Section 2 , challenge

rganization, the established validation framework, the data sets

sed within the challenge and the participation teams will be in-

roduced. In Section 3 , summary about each submitted algorithm

ill be described. The validation results for all submitted algo-

ithms will be described in Section 4 . Discussions of the perfor-

ance and the computational efficiency of methods of all partici-

ating teams will be presented in Section 5 , followed by conclusion

n Section 6 . 
. Challenge setup 

.1. Organization 

The aim of the challenge is to investigate (semi-)automatic IVD

ocalization and segmentation algorithms and to provide a stan-

ard evaluation framework with a set of 3D T2-weighted TSE MR

mages. There are 7 IVDs T11-S1 to be localized and segmented

rom each image as shown in Fig. 1 . Thus, the challenge has been

ivided into two parts: the localization part and the segmentation

art. In the localization part, the task is to fully automatically iden-

ify the centers of 7 IVDs T11-S1 from each image. In the segmen-

ation part, the task is to automatically segment 7 IVD regions T11-

1 from each image. Each team can choose to participate in either

ne of the two parts or in both parts. 

There are two stages in the challenge. In stage 1, a training data

et and the associated ground truth were released on March 1st,

015 for method development and a first test data set were re-

eased on August 15, 2015 for method testing. In stage 2, an on-

ite competition was organized for which a second test data set

as released on October 05, 2015. 

.2. Validation framework 

The established validation framework includes five standard

etrics to evaluate the algorithm performance, two for localiza-

ion and three for segmentation. For evaluation of the localization

erformance, we propose to use the following two metrics: 

1. Mean localization distance (MLD) with standard deviation

(SD) 

We first compute the localization distance R for each IVD

center using 

R = 

√ 

(�x ) 2 + (�y ) 2 + (�z) 2 (1) 

where �x, �y , and �z are respectively x, y , and z coordinate

difference between the identified IVD center and the ground

truth (GT) IVD center calculated from the ground truth seg-

mentation. 

MLD and SD are then defined as follows: ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

MLD = 

∑ N images 

i =1 

∑ N IV Ds 

j=1 
R i j 

N images N IV Ds 

SD = 

√ ∑ N images 

i =1 

∑ N IV Ds 

j=1 
( R i j − MLD ) 

2 

N images N IV Ds 

(2) 

where N images is the number of MR images, and N IVDs is the

number of IVDs. 

2. Successful detection rate (SDR) with various ranges of ac-

curacy 

If the distance between the localized IVD center and the

ground truth center is no greater than t mm, the localiza-

tion of this IVD is considered as a successful detection; oth-

erwise, it is considered as a false localization. The successful

localization rate P t with accuracy of less than t mm is for-

mulated as follows 

P t = 

number of accurate IVD localizations 

number of IVDs 
× 100% (3) 

For evaluating the segmentation performance, we use the fol-

owing three metrics: 

1. Dice overlap coefficients (Dice): Dice measures the percent-

age of correctly segmented voxels. Dice ( Dice, 1945 ) is com-

puted by 

Dice = 

2 | A ∩ B | 
| A | + | B | × 100% (4) 

http://ijoint.istb.unibe.ch/challenge/index.html
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Fig. 1. The 7 IVDs to be localized and segmented from each image. 

Table 2 

Demographic statistics of the 25 subjects. 

Subject characteristics Mean ± SD Min Max 

Age (year) 34 .4 ± 8.1 20 45 

Weight (kg) 76 .1 ± 10.7 59 104 

Height (cm) 179 .5 ± 6.9 169 .0 196 .1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Inter-observer variability of manual segmentation generated by three 

trained raters and an experienced expert using the metrics defined in 

Section 2.2 . 

MLD ± SD (mm) Mean Dice ± SD (%) Mean AAD ± SD (mm) 

0 .16 ± 0.17 99 .1 ± 0.7 0 .81 ± 0.09 
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where A is the set of foreground voxels in the ground-truth

data and B is the corresponding set of foreground voxels

in the segmentation result, respectively. Larger Dice metric

means better segmentation accuracy. 

2. Average absolute distance (AAD): AAD measures the aver-

age absolute distance from the ground truth IVD surface and

the automatically segmented surface. To compute the AAD,

we first generate a surface mesh from binary IVD segmen-

tation using the Matlab toolbox Iso2mesh ( Fang and Boas,

2009 ). For each vertex on the surface model derived from

the automatic segmentation, we find its closest distance to

the surface model derived from the associated ground-truth

segmentation. The AAD is then computed as the average of

distances of all vertices. Smaller AAD means better segmen-

tation accuracy. 

3. Hausdorff distance (HD): HD measures the Hausdorff dis-

tance ( Huttenlocher et al., 1993 ) between the ground truth

IVD surface and the segmented surface. To compute the HD,

we use the same surface models as we used for computing

the AAD. Smaller HD means better segmentation accuracy. 

2.3. Description of image data sets 

There are 25 3D T2-weighted TSE MR images collected from

25 male subjects in two different studies investigating IVD mor-

phology change after prolonged bed rest (spaceflight simulation)

( Belavy et al., 2012; 2011 ). Table 2 summarizes the demographic

statistics of the 25 subjects. Each subject was scanned with 1.5

Tesla MR scanner of Siemens Magnetom Sonata (Siemens Health-

care, Erlangen, Germany) with following protocol to generate T2-

weighted sagittal images: repetition time of 5240 ms and echo

time of 101 ms were used in acquisition of 15 3D T2-weighted

MR images in the first study while repetition time of 6220 ms and

echo time of 105 ms were used in acquisition of the rest 10 3D

T2-weighted MR images in the second study. The resolution of all

images were resampled to 2 mm × 1.25 mm × 1.25 mm. Each im-

age contains at least 7 IVDs T11-S1. Thus, in this challenge, we only

consider 7 IVDs T11-S1. An ethical approval was obtained from the
thical Committee of the Charit ́e University Medical School Berlin,

ermany, to conduct the study. These 25 MR images were divided

nto three subsets as Training data (10 3D T2-weighted MR im-

ges from the first study plus 5 3D T2-weighted MR images from

he second study), Test1 data (4 3D T2-weighted MR images from

he first study and 1 3D T2-weighted MR image from the second

tudy) and Test2 data (1 3D T2-weighted MR image from the first

tudy and 4 3D T2-weighted MR images from the second study)

or the challenge with two stages. 

For each one of these 3D T2-weighted MR images, the segmen-

ation of 7 IVDs T11-S1 was conducted in two stages. In the first

tage, slice by slice manual segmentation was performed by three

rained raters with different degrees of expertise (3–15 years of

xperience with MR/CT segmentation) using Amira software ( http:

/www.vsg3d.com/amira ) under the guidance of clinicians. The ref-

rence segmentation for each MR image was then generated based

n consensus reading of all three raters, e.g., the majority voting

f all three manual segmentations. In the second stage, an experi-

nced surgeon was asked to independently segment all the 25 MR

mages using also the Amira software to generate another set of

egmentation. 

We then evaluated the inter-observer variability for the two

ets of manual segmentation to assess the consistency and vari-

bility. The inter-observer variability was calculated using the met-

ics defined in Section 2.2 and presented in Table 3 . The results

how that the reference segmentation has high consistency with

he expert segmentation and thus we use the reference segmenta-

ion as the associated ground-truth for evaluating performance of

ifferent algorithms submitted to the challenge. The ground-truth

VD centers were then calculated as centroids of the associated IVD

egions. 

.4. Participating teams 

A total of 16 teams (from 11 countries) from both industry and

cademy registered in this challenge, and initially 10 teams sub-

itted their results on the Test1 data. All these 10 teams were in-

ited to participate the on-site competition in stage 2. Afterwards,

http://www.vsg3d.com/amira


G. Zheng et al. / Medical Image Analysis 35 (2017) 327–344 331 

w  

t  

t  

s  

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

s  

e

3

 

t  

l  

i  

d  

s  

2  

e  

d  

c  

N  

c  

m

 

s  

t  

t  

t  

t  

n  

i  

i  

i  

t  

i  

t  

i  

s

N

 

b  

s  

a  

s  

m

3

 

d  

o  

(  

f  

I  

i  

s  

w  

u  

t  

l  

o

3

 

C  

t  

t  

s  

s  

r  

i  

v  

a  

i  

b  

c  

a  

t  

l  

T  

w  

p  

i  

i  

m  

c  

v  

l  

f  

u  

t

3

 

t  
e received agreements from 9 teams to include their results in

his paper. The name abbreviation for each included team and the

itle of their contribution are given as follows. To simplify the de-

cription below, we will use the team abbreviations to refer both

he teams and the methods introduced by the associated teams. 

1. ICL : Lopez Andrade and Glocker ( Lopez Andrade and

Glocker, 2015 ). Complementary classification forests with

graph-cut refinement for accurate intervertebral disc local-

ization and segmentation (UK). 

2. Sectra : Wang and Forsberg ( Wang and Forsberg, 2015 ). Seg-

mentation of intervertebral discs in 3D MR data using multi-

atlas based registration (Sweden). 

3. UNIBE : ( Chu et al., 2015 ). Localization and segmentation of

3D intervertebral discs from MR images via a learning based

method (Switzerland). 

4. UNICHK : ( Chen et al., 2015b ). DeepSeg: Deep segmentation

networks for intervertebral disc localization and segmenta-

tion (China). 

5. UNIEXE : ( Hutt et al., 2015 ). 3D intervertebral disc segmen-

tation from MR using supervoxel-based Conditional Random

Fields (CRFs) (UK). 

6. UNIGRA ( Urschler et al., 2015 ). Automatic intervertebral disc

localization and segmentation in 3D MR images based on re-

gression forests and active contours (Austria). 

7. UNILJU : ( Korez et al., 2015a ). Deformable model-based seg-

mentation of intervertebral discs from MR spine images by

using the SSC descriptor (Slovenia). 

8. UNIQUE : ( Neubert et al., 2015 ). Automated intervertebral

disc segmentation using probabilistic shape estimation and

active shape models (Australia). 

9. VRVIS : Wimmer and Novikov. A machine learning based

pipeline for automated intervertebral disc labeling and seg-

mentation in 3D T2-weighted MR data (Austria). 

. Methods 

In this section, we would like to present the methods that were

ubmitted to the challenge. In the next section we will analyze the

xperimental results achieved by these methods. 

.1. Method of team ICL 

Lopez Andrade and Glocker (2015) proposed a pipeline for the

ask of automatic localization and segmentation of IVDs in the

umbar spine involving a combination of several machine learn-

ng techniques. The spine detection phase aims to estimate the

imensions and location of a 3D bounding box that contains the

pine and makes use of two complementary RFs (see Glocker et al.,

016 for details) that classify voxels based on Histogram of Ori-

nted Gradients (HOG) and Haar-like features, respectively. The

isc probability maps generated by the classification are then pro-

essed by the Density Based Spatial Clustering of Applications with

oise algorithm (DBSCAN) ( Ester et al., 1996 ), which outputs the

entral points corresponding to high density areas. An outlier re-

oval stage discards the false disc centroids. 

The segmentation is posed as an energy minimization problem

olved via graph-cuts (see Boykov and Funka-Lea (2006) ). Each of

he discs in the image is segmented separately, and the result is

hen combined into a single label map. The designed graph has

wo types of edges: terminal edges, that connect the voxels and

he terminal nodes s and t ; and non-terminal edges, that connect

eighboring voxels. The capacities of the edges between neighbor-

ng voxels are defined by the following equation; where dist ( v i , v j )

s the Euclidean distance between the voxels v i and v j , I F ( v i ) is the

ntensity of voxel v in the filtered image, σ 2 is an estimation of
i 
he noise variance, k is a constant that normalizes the edge capac-

ties between 0 and 100, and λ corresponds to the relative impor-

ance of non-terminal and terminal edges. σ 2 is estimated for the

nput filtered image as the difference between this image and the

ame image after applying a discrete Gaussian filtering. 

(L i , L j ) = λ
[ 

k 

dist(v i , v j ) 
exp 

(
−(I F (v i ) − I F (v j )) 2 

2 σ 2 

)] 
(5) 

The capacities of the terminal edges are further modulated

y the probability label maps. The minimization problem is then

olved via the max-flow/min-cut algorithm. Isolated regions whose

rea is smaller than 50 mm 

2 are discarded. Similarly, if there are

everal connected objects, the ones whose area is smaller than the

ean area of all the objects are also deleted. 

.2. Method of team Sectra 

Building upon two earlier works, with one for vertebral body

etection and labeling in MR data ( Lootus et al., 2015 ) and the

ther for multi-atlas based segmentation of vertebrae in CT data

 Forsberg, 2015 ), Wang and Forsberg (2015) propose an approach

or the task of localization and segmentation of IVDs in MR data.

n the first step, vertebral bodies are detected and labeled using

ntegral channel features and a graphical parts model. The second

tep consists of image registration, where a set of image volumes

ith corresponding IVD atlases are registered to the target volume

sing the output from the first step as initialization for the regis-

ration. In the final step, the registered atlases are combined using

abel fusion to derive the combined localization and segmentation

f the IVDs. 

.3. Method of team UNIBE 

Building upon the work introduced by Chen et al. (2015a ),

hu et al. (2015) develop a two-stage coarse-to-fine approach to

ackle the problems of fully automatic localization and segmen-

ation of 3D IVD from MR images. More specifically, in the first

tage, the learning-based, unified data-driven regression and clas-

ification framework introduced by Chen et al. (2015a ) is used to

oughly localize and segment each disc. The localization of 3D IVD

s solved with a data-driven regression where they aggregated the

otes from a set of randomly sampled image patches to get a prob-

bility map of the location of a target vertebral body in a given

mage. The resultant probability map is then further regularized

y Hidden Markov Model (HMM) to eliminate potential ambiguity

aused by the neighboring discs. The output from the localization

llows one to define a region of interest (ROI) for the segmenta-

ion step, where a data-driven classification is used to estimate the

ikelihood of a pixel in the ROI being foreground or background.

he estimated likelihood is combined with the prior probability,

hich is learned from a set of training data, to get the posterior

robability of the pixel. The coarse segmentation of the target IVD

s then done by a binary thresholding on the estimated probabil-

ty. In the second stage, after the IVDs are roughly segmented, a

ulti-atlas fusion based graph cut method is used to modify the

oarse segmentation of each IVD. A registration framework is de-

eloped which allows not only accurate alignment of multiple at-

ases within the target image space but also a fast selection of atlas

or generating probabilistic atlas (PA). The generated PAs is finally

sed in a graph cut method ( Boykov and Funka-Lea, 2006 ) to get

he refined segmentation of IVDs. 

.4. Method of team UNICHK 

Chen et al. (2015b ) propose a deeply supervised segmenta-

ion network called DeepSeg-3D for automatic IVD localization and
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Table 4 

The architecture of DeepSeg-3D model. 

Layer Kernel size Stride Output size Feature maps 

Input - - 40 × 304 × 304 1 

C1 5 × 7 × 7 1 40 × 304 × 304 4 

M1 2 × 2 × 2 2 20 × 152 × 152 4 

C2 3 × 5 × 5 1 20 × 152 × 152 8 

M2 2 × 2 × 2 1 10 × 76 × 76 8 

U3 3 × 3 × 3 1 20 × 152 × 152 2 

U4 3 × 3 × 3 1 40 × 304 × 304 2 

Softmax - - 40 × 304 × 304 2 

C: convolution, M: max-pooling, U: unpooling 
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segmentation from MR images. DeepSeg-3D takes full advantage

of volumetric information based on 3D convolutional kernels and

makes full use of volumetric information in all dimensions for bet-

ter discrimination performance. They implement the convolutional

network in a 3D format, which inputs 3D volumetric data and di-

rectly outputs a 3D prediction mask. Specifically, the architecture

of neural network contains 2 convolutional layers, 2 max-pooling

layer for down-sampling and 2 unpooling layers for up-sampling.

Three architectures with different convolutional kernel sizes are

used. The details of one architecture of DeepSeg-3D can be seen

in Table 4 . Finally, a softmax classification layer is followed to gen-

erate the prediction probabilities. All the convolutional kernels of

the DeepSeg-3D model were initialized from the Gaussian distri-

bution and the input to the network is the direct 3D volumetric

data. The model was trained by minimizing the cross-entropy loss

via standard back-propagation. The output from DeepSeg-3D is fur-

ther processed with thresholding and disk filtering to generate lo-

cal smooth maps. Then the segmentation mask can be obtained by

finding the connected component after removing small areas. Fur-

thermore, the center of IVD can be determined as the centroid of

the connected component. 

3.5. Method of team UNIEXE 

Hutt et al. (2015) propose a fully automated method for IVD

segmentation based on a CRF operating on supervoxels (groups

of similar voxels). To generate supervoxels for a volume, they

use a modified version of simple linear iterative clustering (SLIC)

( Achanta et al., 2012 ) which results in supervoxels with approxi-

mately equal physical extent in all directions. An unsupervised fea-

ture learning approach is then developed to learn descriptive rep-

resentations of the data over multiple scales to characterize the

supervoxel regions. The features are used to train an SVM with

a generalized radial basis function (RBF) kernel for estimating the

class labels of the supervoxels. The classifier predictions are incor-

porated into the potential functions of a CRF along with a learned

metric between supervoxels, which enables efficient segmentation

using graph cuts ( Boykov and Funka-Lea, 2006 ). For more details,

we refer to Hutt et al. (2015) . 

3.6. Method of team UNIGRA 

The algorithm developed by Urschler et al. (2015) is built upon

a machine learning based landmark localization step using regres-

sion forests ( Gall et al., 2011; Donner et al., 2013 ) together with

a high-level MRF model of the global configuration of the relative

landmark positions. While the regression forests predict a number

of candidates for each landmark (both IVDs and vertebral bodies)

individually, the purpose of the MRF is to select the most probable

configuration given the individual voted for locations and the dis-

tribution of landmarks in a training data set. After landmark pre-

diction, they develop a three-step image processing pipeline for

segmentation. First, they roughly segment vertebral bodies based
olely on image gradient information, followed by a merging of

airs of adjacent vertebral bodies to single objects to initialize IVD

egmentation. Finally, they formulate the IVD segmentation prob-

em as a convex geodesic active contour (GAC) optimization task

ased on edges resembling geometrical similarity to the shape of

VDs ( Hammernik et al., 2015 ). Solving the convex GAC model is

nabled by a formulation based on weighted total variation and

 primal-dual optimization scheme. Enabled by the robustness of

revious localization, this latter segmentation step requires no a

riori information on appearance but only a very rough shape

rior. For more details, we refer to Urschler et al. (2015) . 

.7. Method of team UNILJU 

Korez et al. (2015a ) propose a supervised framework as shown

n Fig. 2 for fully automated localization and segmentation of IVDs

rom magnetic resonance (MR) images by integrating modern im-

ge analysis approaches such as RF-based anatomical landmark de-

ection and surface enhancement, computationally efficient Haar-

ike features and self-similarity context (SSC) descriptor, and robust

hape constrained deformable models. 

In their method, IVD localization is performed by detecting its

isually distinguishable or anatomically relevant points, i.e. land-

arks. Each IVD is described by five landmarks that define its mid-

oint and most superior, inferior, anterior and posterior points. The

roperties of these landmarks are studied using training images of

anually segmented discs and then used for identification of the

ame landmarks on a new target image. The intensity appearance

f each landmark is captured by Haar-like features, which proved

ffective for detecting landmarks from MR images of soft tissue

 Ibragimov et al., 2015 ). To minimize landmark mis-detection, for

xample, when a landmark is positioned on a neighboring disc,

hey model the shape of the disc by measuring the pairwise spatial

elationships among the landmarks. Optimal landmark positioning

s therefore obtained at the point of best agreement between the

ppearance and shape models ( Ibragimov et al., 2014 ). 

IVD segmentation is performed by iterative deformation of the

orresponding mean disc model towards the edges of the image.

s IVD edges are poorly visible on MR images, they propose a RF-

ased descriptor for disc edge identification. Using training images

nd corresponding manual segmentations, they model the appear-

nce of each edge point as a 26-dimensional feature vector that

ncludes image intensity, Canny edge operator response, gradient

rientation and magnitude, SSC features ( Heinrich et al., 2013 ) and

ther relevant features ( Korez et al., 2015b; 2015a ). During the seg-

entation process, the disc model deforms under the influence of

he external energy that moves the model surface towards the de-

ected edge points, and the internal energy that preserves the in-

egrity of the model, its resemblance to the IVD and does not allow

ts parts to be separated from each other. The final segmentation

s obtained at the point of equilibrium between the external and

nternal energy. 

.8. Method of team UNIQUE 

The method developed by Neubert et al. (2015) extends and

ully automates their previous work on active shape model (ASM)

ased volumetric segmentation of lumbar and thoracic IVDs from

agnetic resonance (MR) images of the spine ( Neubert et al.,

012 ). The initial version of this algorithm was developed for high-

esolution volumetric MR images acquired in the axial plane. How-

ver, routine clinical examinations are typically acquired using 2D

SE images in the sagittal plane. The original ASM approach was

uccessfully applied to the segmentation of lumbar IVDs from TSE

cans by developing a novel initialization scheme. Specifically, an

utomated localization approach using multi-atlas registration and
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Fig. 2. A schematic illustration of the method developed by ( Korez et al., 2015a ). 
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robabilistic shape regression was used to initialize volumetric

SM segmentation driven by grey-level intensity models, as pre-

ented in their previous work ( Neubert et al., 2012 ). For details,

e refer to Neubert et al. (2015) . 

.9. Method of team VRVIS 

Wimmer and Novikov propose a machine learning based

ipeline for automated IVD labeling and segmentation. Their

ethod localizes disc center candidates by RF regression ( Breiman,

0 01 ) from 20 0 0 sampled positions. They extract 3D Haar-like fea-

ures ( Viola and Jones, 2001 ) and HOG features ( Dalal and Triggs,

005 ) around each position. The HOG parameters were set to 9

rientation bins and a cell size of 8mm. Patch sizes were chosen

mpirically based on the morphometry of the discs. They propose

o extract HOG features from the sagittal and coronal plane to in-

rease the regression efficiency. As a second step, filtering of po-

itions inside discs is performed by SVM classification based on

OG features, whereby 20 best candidates are selected for every

isc and the sacrum. Final disc centers are retrieved by apply-

ng a graphical model on the filtered disc candidates, similarly to

chmidt et al. (2007) . Two connected models are used to reduce

he Computational Complexity (CC) of the labeling problem. The

rst model covers the discs from the sacrum up to L 2/ L 3 and the

econd model comprises of discs L 2/ L 3 to T 11/ T 12. Due to a higher

atching performance of the first model, they made the second

odel dependent on the matching result of the first one. Finally,

VDs are segmented around the detected centers by a learning-

ased active contour model built upon a Morphological Active Con-

our Without Edges ( Marquez-Neila et al., 2014 ). The model is en-

anced with RF classifiers trained on field-specific, contextual fea-

ures for each disc separately. 

. Experimental results 

Quantitative evaluation of the methods of all participating

eams is summarized in this section. All the methods were eval-

ated against the ground truth on 10 3D testing volumes, includ-

ng 5 Test1 volumes and 5 Test2 volumes. In the localization step,

 teams submitted their automatic IVD localization results except

eam UNIQUE where they used manual clicks for initialization pur-

ose. Thus we do not include their results for evaluation and com-

arison. In the segmentation step, all the 9 teams submitted their

esults obtained on both Test1 data and Test2 data. However, in

tage 2, team UNIGRA failed to segment disc T12-T11 in case 5 al-
hough they achieved quite good segmentation results in other 4

ases. Thus, we do not include their results for quantitative evalu-

tion and comparison purpose on Test2 data. For all the statistical

ests, the significance level is chosen to be 0.01. 

.1. Stage 1 

Fig. 3 compares the overall localization results among 8 partic-

pating teams in detection of in total 35 IVDs of Test1 data. MLD,

D and SDRs using 3 precision ranges t = 2.0 mm, 4.0 mm, and

.0 mm (Bars) achieved by these 8 teams are shown in this fig-

re. In Fig. 4 , we visually compare the ground truth localization

ith the localization results achieved by all 8 submitted methods

n the middle sagittal images extracted from 5 3D MR images of

est1 data. 

Fig. 5 shows the segmentation results achieved by the 9 partici-

ating teams on Test1 data. It compares the overall results of Dice,

AD and HD in segmentation of 35 IVDs between the 9 participat-

ng teams on Test1 data. Fig. 5 (b, c, d) present the per case per al-

orithm evaluation results on Test1 data when we use respectively

ice, AAD, and HD as metrics. Fig. 6 shows the visual comparisons

f the segmentation results obtained by all 9 submitted algorithms

n 3 cases of Test1 data. 

.2. On-site competition 

Fig. 7 compares the localization results between 8 participating

eams in detection of 35 IVDs on Test2 data, which was released

or on-site competition. MLD, SD and SDRs using 3 precision ranges

 = 2.0 mm, 4.0 mm, and 6.0 mm (Bars) are shown in this figure.

lease note that during on-site competition we only allowed max-

mally one and half hours for each team to finish localization and

egmentation of 5 3D T2 MR images. In Fig. 8 , we visually com-

are the localization results obtained by all teams on each image

f Test2 data. 

Fig. 9 shows the segmentation results obtained by the 8 partic-

pating teams on Test2 data (excluding team UNIGRA). It compares

he overall results of Dice, AAD and HD in segmentation of 35 IVDs

etween the 8 participating teams. In Fig. 9 (b, c, d), the per case

er algorithm evaluation results are given when we use respectively

ice, AAD, and HD as metrics for evaluation. Fig. 10 shows the vi-

ual comparisons of the segmentation results obtained by all sub-

itted algorithm on 3 cases of Test2 data. 
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Fig. 3. Quantitative evaluation of the localization results for 8 submitted methods on Test1 data. 

Fig. 4. Visual comparison of localization results for the ground truth (GT) as well as for the 8 submitted methods on Test1 data, where localization results of 7 IVDs on the 

mid-sagittal slice are shown. The GT localization and the results from different teams are displayed in different colors. 
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5. Discussions 

5.1. Results of stage 1 

The performance of the localization methods of the participat-

ing teams on Test1 data ranges from 0.79 mm to 4.19 mm in MLD

and 2.9% to 97.1% in SDR for 2.0 mm precision range. It is ob-
erved that in overall, the best localization result on Test1 data

s achieved by the method from team UNICHK with the lowest

LD (0.79 mm). On the other hand, the method from team Sectra

chieves the highest SDR (97.1%) when evaluated using 2 mm pre-

ision range and lowest SD (0.42 mm). All the 8 submitted meth-

ds are able to achieve a SDR better than 80% when the precision

ange is 6 mm and 6 teams are able to achieve a SDR better than
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Fig. 5. Segmentation results on Test1 data. 
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0% when the precision range is 4 mm. However, when the preci-

ion range is set to 2 mm, only 5 teams obtain the SDR better than

0%. 

When the localization results are evaluated by MLD and SD,

t is observed that the top ranked teams such as UNICHK, Sec-

ra, UNIBE, UNIEXE, and ICL achieve quite accurate results that are

lose to or less than 1.0 mm. Paired student’s t-tests were per-

ormed to detect whether the differences between the localization

esults of different methods are statistically significant and the test

esults (p-values) are presented in Table 5 . No statistically signifi-

ant difference was found among the localization results of the 5

op ranked teams, which was consistent with the results shown

n Fig. 3 . Among the 8 submitted methods, 6 of them are able

o achieve MLD lower than 2 mm, which is regarded as accurate

nough for clinical use ( Belavy et al., 2011 ). 

From Fig. 4 , it is observed that all the submitted methods are

ble to localize 35 IVDs with reasonable accuracy although for

ome cases the localization results are much diverse. Specifically,

he localization results for case 4 are quite accurate for all submit-

ed methods and the localization results for case 1 and case 5 are

cceptable. However for case 2 and case 3, localization results from

eam VRVIS are far from the IVD centers such as for IVDs L5-L4 and

4-L3 in case 2, S1-L5 and L5-L4 in case 3. 

The performance of the segmentation methods of the partici-

ating teams ranges from 80.8% to 91.5% in mean Dice, 1.1 mm to

.6 mm in mean AAD, and 4.4 mm to 6.4 mm in mean HD. It is

bserved that the best segmentation results is achieved by team

NILJU with an average Dice of 91.5 ± 2.3%, an average AAD of

.1 ± 0.2 mm, and an average HD of 4.4 ± 0.7 mm. In overall,

ll the 9 teams obtain an average Dice greater than 80% and an

verage AAD lower than 1.7 mm, which are acceptable for clini-

al practice ( Belavy et al., 2011 ). From the visual comparison as

hown in Fig. 6 , it is observed that obvious over-segmentation and

nder-segmentation exist, indicating that this is still a challeng-

ng problem and requires further improvement. Paired student’s t-

ests are performed to detect whether the differences of the seg-

entation results (35 IVDs) between different teams are statisti-
ally significant and the test results (p-values) are described in

able 6 . When we evaluate the segmentation results using Dice

s the evaluation metric, it can be found that the differences be-

ween team UNILJU and all other 8 teams are of statistical signifi-

ance (all p-values are less than 0.01), which is consistent with the

esults reported in Fig. 5 . It is also observed that there is no sta-

istically significant difference between team UNIQUE and VRVIS.

owever, statistically significant differences are found when we

ompare these 2 teams with other 7 teams. When we evaluate

he segmentation results using AAD as the metric, again we find

hat the differences between team UNILJU and almost all other

eams are statistically significant (except for team UNIBE where p-

alue is slightly greater than 0.01). We also find that there are no

tatistically significant difference between following 5 teams: Sec-

ra, UNIEXE, UNIBE, UNICHK, and ICL. However, when we compare

hese 5 teams with other two teams such as UNIQUE and VRVIS,

tatistically significant differences are observed (p-values smaller

han 0.01). 

.2. Results of on-site competition 

The performance of the localization methods of the participat-

ng teams on Test2 data ranges from 0.81 mm to 4.58 mm in MLD

nd 0.0% to 100.0% in SDR for 2.0 mm precision range. It is ob-

erved that in overall, team ICL obtains the best localization re-

ults with the highest SDR (100.0%) when evaluated using 2 mm

recision range and the lowest MLD (0.81 mm) and SD (0.37 mm).

hen we focus on SDR, all the 8 teams are able to achieve a SDR

etter than 80% when the precision range is 6 mm and 6 teams are

ble to achieve a SDR better than 80% when the precision range is

 mm. However, when we use 2 mm precision range, only 4 teams

btain the SDR better than 80%. 

When the localization results are evaluated with MLD, the top

anked 4 teams of ICL, UNICHK, UNIEXE, and Sectra are able to

chieve MLD lower than 1.0 mm, which is regarded as accurate

nough for clinical usage. Paired student’s t-tests are performed to

etect whether the differences between different teams in local-
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Fig. 6. Visual comparisons of segmentation results on case 1 (top row), 3 (middle row), and 5 (bottom row) of Test1 data. Segmentation contours on 2 typical sagittal slices 

are shown at each row. The ground truth (GT) segmentation and the segmentation results from different teams are visualized in different colors. 

Fig. 7. Quantitative evaluation of localization results for 8 teams on Test2 data. 
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Fig. 8. Visual comparison of the localization results for the ground truth (GT) as well as for the 8 teams on Test2 data, where localization results of 7 IVDs on the mid-sagittal 

slice are shown. The GT localization and the results from different teams are displayed in different colors. 

Table 5 

Paired student’s t-tests (p-value) to detect whether there are statistically significant differences 

between the localization results achieved by 8 teams on Test1 data. 

Sectra UNIBE UNIEXE ICL UNILJU UNIGRA VRVIS 

UNICHK 7.8E −01 2.5E −01 2.2E −02 1.6E −02 2.5E −08 4.6E −17 4.6E −10 

Sectra 2.8E −01 3.7E −02 2.7E −02 7.8E −08 4.6E −17 3.3E −10 

UNIBE 6.0E −01 4.3E −01 3.5E −04 2.6E −16 5.0E −09 

UNIEXE 8.1E −01 7.0E −05 7.4E −13 1.8E −08 

ICL 4.1E −04 3.0E −14 1.1E −09 

UNILJU 2.1E −10 2.0E −06 

UNIGRA 6.5E −01 

i  

r  

e  

a  

s

 

t  

a  

e  

i  

t  

f

 

p  

D  

i  

T  

9  

o  

g  

t  

v  

T  

s  
zation of 35 IVDs on Test2 data are statistically significant and the

esults are presented in Table 7 . No statistically significant differ-

nce is detected among following 4 teams: ICL, UNICHK, UNIEXE,

nd Sectra. These four teams obtain quite accurate localization re-

ults as shown in Fig. 7 . 

From Fig. 8 , it is observed that quite promising results are ob-

ained on case 1, case 2, and case 5, even though the appearance

round each IVD region is quite different from each other. How-

ver, there exist obvious outliers in localization of IVD L3-L2, L2-L1

n case 3 and T12-T11 in case 4 as the results obtained by some

eams are out of the IVD regions. These results indicate the room

or improvement and need further investigation. 
The performance of the segmentation methods of the partici-

ating teams on Test2 data ranges from 81.6% to 92.0% in mean

ice, 1.1 mm to 1.5 mm in mean AAD, and 4.2 mm to 5.1 mm

n mean HD. It is observed that the best segmentation result on

est2 data is achieved by team UNILJU with an average Dice of

2.0 ± 1.9%, an average AAD of 1.1 ± 0.1 mm, and an average HD

f 4.2 ± 0.6 mm. In overall, all the 8 teams obtain an average Dice

reater than 80% and an average AAD lower than 1.6 mm. From

he visual comparison as shown in Fig. 10 , it is observed that ob-

ious leakage exists, especially in case 3 and case 5 where IVD L1-

12 are severely over-segmented by several teams. Besides over-

egmentation, there also exists under-segmentation such as IVD
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Fig. 9. Segmentation results on Test2 data. 

Table 6 

Paired student’s t-tests (p-value) to detect whether the differences between segmentation results obtained 

from different methods when evaluated on Test1 data are statistically significant. For two metrics used in our 

study, we conduct t-tests separately. 

Dice (%) 

Sectra UNIEXE UNIBE UNICHK ICL UNIGRA UNIQUE VRVIS 

UNILJU 9.6E −04 5.5E −03 1.4E −03 4.2E −06 7.1E −07 3.7E −07 9.7E −14 1.5E −13 

Sectra 6.2E −01 4.8E −01 4.9E −04 3.2E −03 2.8E −04 4.4E −13 3.9E −13 

UNIEXE 9.9E −01 4.4E −02 4.9E −03 1.4E −03 1.9E −09 2.1E −11 

UNIBE 1.2E −02 1.5E −02 2.0E −03 3.3E −11 5.5E −11 

UNICHK 5.4E −01 1.3E −01 7.5E −09 1.5E −10 

ICL 4.4E −01 2.0E −06 7.5E −08 

UNIGRA 3.2E −05 5.8E −10 

UNIQUE 4.1E −02 

AAD (mm) 

Sectra UNIEXE UNIBE UNICHK ICL UNIGRA UNIQUE VRVIS 

UNILJU 4.0E −03 7.4E −03 1.7E −02 5.7E −04 7.8E −03 2.5E −05 4.9E −08 4.7E −10 

Sectra 5.9E −01 6.3E −01 7.1E −02 3.8E −01 2.8E −03 5.3E −06 5.9E −09 

UNIEXE 9.9E −01 4.0E −01 6.1E −01 4.1E −03 1.6E −03 1.4E −08 

UNIBE 4.4E −01 6.5E −01 6.5E −03 2.6E −03 3.6E −06 

UNICHK 9.1E −01 1.6E −02 5.8E −03 1.8E −06 

ICL 3.6E −02 6.0E −03 1.0E −04 

UNIGRA 4.5E −01 3.1E −02 

UNIQUE 2.3E −04 

Table 7 

Paired student’s t-tests (p-value) to detect whether the differences of the localization results be- 

tween different teams on Test2 data are statistically significant. 

UNICHK UNIEXE Sectra UNIBE UNILJU UNIGRA VRVIS 

ICL 6.6E −01 4.2E −01 1.9E −01 9.9E −05 3.7E −11 8.5E −18 5.5E −13 

UNICHK 7.7E −01 4.1E −01 6.8E −04 1.2E −09 8.0E −18 1.6E −12 

UNIEXE 5.5E −01 2.3E −04 3.9E −08 2.5E −18 1.1E −13 

Sectra 3.6E −02 8.9E −07 1.3E −15 7.4E −13 

UNIBE 2.7E −04 1.2E −15 1.2E −11 

UNILJU 1.1E −10 6.1E −08 

UNIGRA 5.9E −01 
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Fig. 10. Visual comparisons of segmentation results on case 1 (top row), 3 (middle row), and 5 (bottom row) of Test2 data. Segmentation contours on 2 typical sagittal slices 

are shown at each row. The ground truth (GT) segmentation and the segmentation results from different teams are visualized in different colors. 

L  

u  

(  

P  

f  

e  

i  

D  

t  

U  

s  

S

5

 

f  

p  

1  

t  

a  

w

 

p  

t  
5-L4 in case 3. The experimental results show that it is still an

nsolved and challenging task to reduce both over-segmentation

leakage) and under-segmentation and needs further investigation.

aired student’s t-tests are performed to detect whether the dif-

erences of the segmentation results (35 IVDs) obtained by differ-

nt teams are statistically significant and the results are described

n Table 8 . When we evaluate the segmentation results using both

ice and AAD metric, it is observed that the differences between

eam VRVIS and the other 7 teams are of statistical significance.

sing AAD as the metric, we find that there are no statistically

ignificant differences between following 5 teams such as UNIEXE,

ectra, ICL, UNICHK, and UNIQUE. 
.3. Combined results on test1 and Test2 data 

When we combine results on Test1 and Test2 data (see Table 9

or details), the performance of the localization methods of the

articipating teams ranges from 0.82 mm to 4.39 mm in MLD and

.45% to 98.55% in SDR for 2.0 mm precision range. It is observed

hat in overall, team UNICHK achieves the lowest MLD (0.82 mm)

nd SD (0.49 mm) and team ICL achieves the highest SDR (98.55%)

hen evaluated using 2 mm precision range. 

The performance of the segmentation methods of the partici-

ating teams on Test1 and Test2 combined data ranges from 81.2%

o 91.8% in mean Dice, 1.1 mm to 1.6 mm in mean AAD, and



340 G. Zheng et al. / Medical Image Analysis 35 (2017) 327–344 

Table 8 

Paired student’s t-tests (p-value) to detect whether the differences of the segmentation results 

between different teams on Test2 data are statistically significant. For two metrics used in our 

study, we conduct t-tests separately. 

Dice (%) 

UNIBE UNIEXE Sectra ICL UNICHK UNIQUE VRVIS 

UNILJU 5.3E −02 8.4E −05 1.2E −06 1.7E −08 9.9E −08 1.5E −09 6.1E −13 

UNIBE 1.9E −02 7.0E −03 1.2E −03 1.3E −04 2.4E −06 6.7E −12 

UNIEXE 6.0E −01 1.1E −01 5.6E −03 1.1E −03 1.1E −11 

Sectra 1.2E −01 5.0E −02 4.6E −03 2.6E −10 

ICL 5.7E −01 1.7E −01 3.3E −08 

UNICHK 3.9E −01 9.3E −10 

UNIQUE 3.6E −09 

AAD (mm) 

UNIBE UNIEXE Sectra ICL UNICHK UNIQUE VRVIS 

UNILJU 8.2E −01 7.0E −05 8.3E −07 3.6E −04 4.4E −06 6.1E −12 5.6E −15 

UNIBE 3.7E −04 7.4E −06 1.6E −03 3.0E −05 3.1E −09 5.2E −13 

UNIEXE 2.0E −01 5.0E −01 5.5E −01 2.8E −01 6.4E −10 

Sectra 5.1E −02 4.5E −01 5.8E −01 1.9E −06 

ICL 2.4E −01 2.9E −02 2.4E −09 

UNICHK 6.0E −01 2.6E −09 

UNIQUE 5.0E −08 

Table 9 

Combined results on Test1 and Test2 data. 

Overall Localization Results (Ranked with MLD) 

Rank Team name Test1 results (mm) On-site (Test2) results (mm) Average (mm) 

1 UNICHK 0.79 ± 0.56 0.85 ± 0.52 0.82 ± 0.54 

2 Sectra 0.81 ± 0.42 0.99 ± 0.78 0.90 ± 0.60 

3 ICL 1.09 ± 0.60 0.81 ± 0.37 0.95 ± 0.49 

4 UNIEXE 1.05 ± 0.69 0.89 ± 0.63 0.97 ± 0.66 

5 UNIBE 0.96 ± 0.77 1.35 ± 0.71 1.16 ± 0.74 

6 UNILJU 1.74 ± 0.88 2.18 ± 0.82 1.96 ± 0.85 

7 UNIGRA 3.97 ± 1.19 4.37 ± 1.17 4.17 ± 1.18 

8 VRVIS 4.19 ± 2.34 4.58 ± 1.99 4.39 ± 2.17 

Overall Segmentation Results (Ranked with Dice Overlap Coefficients) 

Rank Team name Test1 results (%) On-site (Test2) results (%) Average (%) 

1 UNILJU 91.5 ± 2.3 92.0 ± 1.9 91.8 ± 2.1 

2 UNIBE 89.8 ± 2.9 91.2 ± 2.0 90.5 ± 2.6 

3 UNIEXE 89.8 ± 3.6 90.2 ± 2.6 90.0 ± 3.1 

4 Sectra 90.0 ± 2.6 90.0 ± 2.2 90.0 ± 2.4 

5 UNICHK 88.4 ± 3.7 88.9 ± 3.4 88.6 ± 3.5 

6 ICL 87.9 ± 3.4 89.3 ± 2.6 88.6 ± 3.1 

7 UNIQUE 82.8 ± 3.7 88.4 ± 2.9 85.6 ± 4.4 

8 VRVIS 80.8 ± 5.8 81.6 ± 6.4 81.2 ± 6.1 
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4.3 mm to 5.1 mm in mean HD. It is observed that in overall, team

UNILJU achieves the best segmentation results with a mean Dice

of 91.8%, a mean AAD of 1.1 mm and a mean HD of 4.3 mm. 

We also compared the results achieved by all teams on Test1

data with those on Test2 data. The average MLD achieved by the

localization methods of all teams on Test1 data is 1.83 mm while

the average MLD on Test2 data is 2.0 mm. With 2 mm precision

range, the average SDR by the localization methods of all teams

on Test1 data is 69.28% while the average SDR on Test2 data is

62.49%. Such an observation indicates that overall the localization

methods of all participating teams perform better on Test1 data

than on Test2 data. In contrast, the mean Dice and the mean AAD

achieved by the segmentation methods of all teams on Test1 data

are 87.6% and 1.3 mm, respectively, while the mean Dice and the

mean AAD achieved by the segmentation methods of all teams on

Test2 data are 89.0% and 1.2 mm, respectively. Paired student’s t-

tests indicate that there are statistically significant differences be-

tween the segmentation results achieved on Test1 data and those

on Test2 data (p-values are smaller than 0.01 for both Dice and

AAD metrics). The comparison result indicates that overall the seg-

mentation methods of all participating teams perform worse on
est1 data than on Test2 data. This probably can be explained by

ur challenge design. Specifically, we have 25 3D T2 MR data from

wo different studies. Our training data in stage 1 contains 10 3D

2 MR data from the first study and 5 3D T2 MR data from the

econd study while Test1 data is designed to have 4 3D T2 MR

ata from the first study and 1 3D T2 MR data from the second

tudy and Test2 data is designed to have 1 3D T2 MR data from

he first study and 4 3D T2 MR data from the second study. The

omparison results indicate that the performance of the localiza-

ion methods of all participating teams depends more on training

ata than that of the segmentation methods. 

.4. Computer Specification and efficiency 

Details about the computer specification and the efficiency of

he 9 participating teams are presented below. A summary of the

etails is presented in Table 10 . 

1. ICL : The pipeline from team ICL has been implemented in

Python with some accelerated functions, such as the feature

extraction, making use of C++. The authors use the RF and
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Table 10 

Details on computation time and computer systems used for the different algorithms. We indicate whether an algorithm uses multi-threaded (MT) or 

graphical processing unit (GPU). 

Team name Avg. time System MT GPU Programming language Remarks 

ICL 3 min 3 .5 GHz 4-cores No No Python and C++ RF and DBSCAN implemented in scikit-learn 

Sectra 8 .5 min 3 .2 GHz 4-cores Yes Yes Matlab and Cuda GeForce GTX 660 Ti with 1344 CUDA cores 

UNIBE 18 min 3 .0 GHz 4-cores No No Matlab and C++ 

UNICHK 3 .1 s 2 .5 GHz 4-cores Yes Yes Python 

UNIEXE 6 min 2 .5 GHz 4-cores Yes No Matlab and C++ 

UNIGRA 8 min 2 .4 GHz 4-cores Yes Yes C++ and Matlab 

UNILJU 5 min 3 .2 GHz 4-cores No No C++ and Matlab 

UNIQUE 19 min 3 .4 GHz 8-cores No No C++ 14 min if localization of the first IVD done manually 

VRVIS 4 .2 min 2 .4 GHz 6-cores Partially No Java Mixture of multi-threaded with single-threaded 
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DBSCAN implementations provided in scikit-learn. All the

tests were executed on a desktop PC equipped with an In-

tel Xeon Quad-Core 3.5GHz CPU. Average running times for

the full pipeline including localization and segmentation are

about 3 minutes. 

2. Sectra : The implementation of the whole segmentation

pipeline from team Sectra was primarily done in MATLAB

but with the registration implemented in CUDA. The Paral-

lel Computing Toolbox of MATLAB was used to take some

advantage of the multi-core architecture of the CPU. The

pipeline was executed on a workstation with Windows 7

SP1 (x64), MATLAB 2014b and CUDA 5.5. The CPU was an

Intel Core i7 960 with four cores with 24 GB of RAM and

the GPU was a GeForce GTX 660 Ti with 1344 CUDA cores.

The complete processing time for a single data set was ap-

proximately 8 min and 30 s with 1 min and 15 s for detec-

tion and labeling, 7 min and 10 s for registration and 5 s for

label fusion. 

3. UNIBE : The algorithm was implemented in Matlab for Data-

driven based method and in C++ for multi-atlas fusion based

graph cut method. The unoptimized implementation re-

quires on average 18 min to localize and segment one sub-

ject on a laptop with 3.0 GHz CPU and 12GB RAM, where

it takes about 3 min to do a rough localization and segmen-

tation and the rest 15 min to finish the multi-atlas-based

segmentation. 

4. UNICHK : DeepSeg-3D was implemented with Python3 based

on the Theano library and it took about 3.1 s to process

one test image with size 40 × 512 × 512 using a standard

PC with a 2.50 GHz Intel(R) Xeon(R) E5-1620 CPU and a

NVIDIA GeForce GTX X GPU, where one single forward prop-

agation in DeepSeg-3D takes about 0.3 s and post-processing

takes another 2.8 s. 

5. UNIEXE : The implementation was written in MATLAB with

C++ code for computationally intensive tasks including su-

pervoxel generation, SVM optimisation and computation of

the CRF max-marginals. The execution time for processing a

single volume after learning was approximately 6 min us-

ing an Intel Core i5 2.50 GHz machine with 8GB of RAM

running Linux (64-bit). 

6. UNIGRA : The whole localization and segmentation approach

was implemented in C++ and OpenMP, with the exception of

the Matlab-based MRF solver. Costly image processing oper-

ations were accelerated using NVidia’s CUDA environment.

The algorithm was executed on a notebook with an Intel

Core i7-4700HQ CPU, 16 GByte of RAM, an NVidia Geforce

GTX 760M GPU with 2GB of RAM, running Ubuntu Linux

15.04. The running time for localization and segmentation

was around 8 minutes per data set, where the computational

effort goes roughly half into localization and segmentation,

respectively. 
7. UNILJU : The detection and segmentation parts of the frame-

work were implemented using C++ and Matlab. The exper-

iments were executed on a personal computer with Intel

Core i5 processor at 3.20 GHz and 16GB of memory without

a graphical processing unit. The detection of all seven IVDs

took on average 85 s, whereas the segmentation of each in-

dividual IVD took on average 30 s. 

8. UNIQUE : The methods were implemented in C++ using In-

sight Segmentation and Registration Toolkit (ITK) and Vi-

sualization Toolkit (VTK) libraries for image and mesh pro-

cessing, an in-house C++ software library for statistical

shape modeling and visualization. The experiments were run

on a desktop computer Intel(R) Core(TM) i7-4770 CPU @

3.40 GHz with 32GB RAM memory under Ubuntu 14.04. The

unoptimized implementation of the fully automated version

requires 19 min to segment one dataset with 7 intervertebral

discs. If localization of the first (L5-S1) disc is done manu-

ally, the processing time is 14 min. 

9. VRVIS : The complete framework was implemented in Java.

All testing experiments were conducted on an Intel Xeon

E5-2620 v3 windows machine with 16GB of RAM. Overall

processing time for disc localization and segmentation of

one data set is around 4.2 min. The bottleneck in terms of

computation time is the disc and sacrum classification with

SVMs. Even though they use multi-threading in this stage,

this step is the most expensive part with a runtime of ap-

prox. 2.7 min. The rest of the pipeline runs in a single-

threaded environment. Feature calculation and regression

take around 30 s, the application of the graphical model

around 50 s and the segmentation of all discs only around

10 s. 

.5. Analysis of advantages and drawbacks of all methods 

The advantages and drawbacks of all methods are summarized

n Fig. 11 . From the results presented in Sections from 5.1 to 5.3 ,

he method of team UNICHK shows the best localization perfor-

ance in this challenge while the method of team UNILJU shows

he best segmentation performance. 

For localization, the crucial difference that makes the method

f team UNICHK superior to other competitors is the deep seg-

entation network which leverages flexible 3D convolution kernels

y considering spatial information for a fast speed with volume-

o-volume classification. Their method takes a volume as input

nd generates a volumetric segmentation mask within one single

orward propagation without restoring to a sliding window strat-

gy. Thus, their localization method is not only the most accu-

ate one but also the fastest one. To confirm this assumption, Chen

t al. (2015b ) implemented another type of deep neural networks

y making use of adjacent slices (the kernel size of the third di-

ension is 3) and refer this one as DeepSeg-2D . The performance
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Fig. 11. Summary of the advantages and limitations of all methods. 

Table 11 

Comparison of two different methods from team UNICHK for IVD localization. 

Method MLD(mm) SD(mm) SDR with t = 2 .0 mm SDR with t = 4 .0 mm SDR with t = 6 .0 mm 

DeepSeg-2D 1 .07 0 .62 91 .4% 100% 100% 

DeepSeg-3D 0 .91 0 .58 94 .3% 100% 100% 

Combined Results 0 .79 0 .56 91 .4% 100% 100% 
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of DeepSeg-2D was compared with that of DeepSeg-3D on Test1

data and the results are presented in Table 11 . 

For segmentation, the crucial difference that makes the method

of team UNILJU superior to other competitors is the efficient com-

bination of machine learning and shape constrained deformable

models. This has been observed in several other top ranked seg-

mentation methods, i.e., efficient integration of learned likelihood
erms within different types of energy minimization-based seg-

entation framework. 

. Conclusion 

The paper presents the construction of a manually annotated

eference data set composed of 25 3D T2-weighted TSE MR
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mages acquired from two different studies and the establishment

f a standard framework for an objective comparison of a repre-

entative selection of the state-of-the-art methods that were sub-

itted to the Automatic MRI IVD Localization and Segmentation

hallenge held at MICCAI 2015. A total of ten teams submitted

heir results in Test1 data, and all of them were accepted to the

n-site competition. Results from 9 teams were included in this

tudy. 

It is worth to point out the limitations of the challenge. Al-

hough the 25 3D T2-weighted MR data set used in this chal-

enge are from two different studies investigating the IVD mor-

hology change after prolonged bed test, all the subjects included

n these two studies are medically and psychologically healthy sub-

ects. Though the majority of the methods of participating teams

chieved quite accurate results, further investigation is required to

ee whether similar results can be obtained when evaluated on

ata acquired from patients with severe pathology. 

The evaluation of changes in IVDs with MR images can be of

nterest for many applications beyond IVD degeneration quantifi-

ation. For example, it is important to know the changes of IVDs

uring prolonged bed rest which is used to understand the effects

f inactivity on the human body and to simulate the effects of mi-

rogravity on human body by space agencies ( Belavy et al., 2012;

011 ). At this moment, clinicians lack tools to conduct a true 3D

uantification even when 3D MR image data are available. Instead,

hey seek to use 2D surrogate measurements measured from se-

ected 2D slices to quantify 3D spinal morphology ( Belavy et al.,

012; 2011 ). Automated methods save time and manual cost, and

llow for a true 3D quantification avoiding problems caused by 2D

easurements. 
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